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Abstract 
 

NPL has developed a Kalman-filter-based clock algorithm for combining 
measurements from its three active hydrogen masers.  The algorithm is 
designed to produce a near optimal composite when the dominant noise 
process present is flicker frequency modulation (FFM).  The FFM is modelled 
approximately by a linear combination of Markov noise processes.  Each Markov process is 
included in the Kalman filter and contributes an additional component to its state vector.  
Both the validity of the model and the effectiveness of adding these additional components 
to the state vector are examined.  The performance of the new algorithm is examined when 
applied to simulated measurements and also to measurements obtained from NPL’s 
hydrogen masers. 
 

 
1.  INTRODUCTION 
 
The National Physical Laboratory (NPL) maintains and develops the UK’s national time scale 
UTC (NPL).  NPL has a requirement to both improve the stability of UTC (NPL) and to steer UTC 
(NPL) as close to UTC as possible.  The improved stability of UTC (NPL) is required for the 
evaluation of new caesium fountain clocks [1] and optical frequency standards at present under 
development.  
 
Clock-combining algorithms are of two types: those based on the use of a Kalman filter, for example 
the GPS composite clock algorithm [2], and those based on a weighted average of the clock data, for 
example the NIST AT1 algorithm [3].  Most operational clock algorithms used in primary timing 
laboratories are of the latter type.  There have been problems in the implementation of Kalman-filter- 
based clock algorithms.  This is because the physical parameters estimated by the state vector are only 
partly observable from the measurements made between individual clock pairs.  Greenhall [4] has 
recently overcome these problems through the development of a method described as covariance 
reduction.  The resulting clock algorithm has the potential to produce a composite clock with a 
stability that is close to optimum for all averaging times.  
 
Kalman-filter-based clock algorithms model the clock noise as a linear combination of White 
Frequency Modulation (WFM), Random Walk Frequency Modulation (RWFM), and Random Run 
Frequency Modulation (RRFM).  By applying the “three-cornered-hat” technique to NPL’s three 
active hydrogen masers, it is possible to obtain plots of Log10(σy) against Log10(τ) for each of NPL’s 
masers.  The results are shown in Figure 1.  The plots reveal a complex noise structure, where some of 
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the noise present may be better described as Flicker Frequency Modulation (FFM), for which the 
curves have an underlying gradient of zero, in addition to WFM and RWFM, where the underlying 
gradients are 21−  and 21 , respectively.  
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Figure 1.  Plots of Log10(σy) against Log10(τ) obtained from measurements made 
between pairs of NPL’s masers and for the individual clocks estimated using a three- 
cornered hat. 

 
 
In this paper, we extend the work of Greenhall [4] to develop a clock algorithm that aims to provide 
close to optimal performance in the presence of FFM.  The FFM is modelled as a linear combination 
of Markov noise processes.  Each Markov process is included in the Kalman filter and contributes an 
additional component to the state vector.  The properties of the resulting clock algorithm are 
examined using both simulated and real clock data.  An iterative method has previously been 
developed to determine the magnitude of noise parameters from a measurement time series [5].  This 
method is extended and applied to a “three-cornered hat” of hydrogen maser measurements to 
estimate the required noise parameters.  
 
 
2.  MODELLING  FLICKER  FREQUENCY  MODULATION  AS  A 
LINEAR  COMBINATION  OF  MARKOV  NOISE  PROCESSES 
 
Flicker Frequency Modulation (FFM) may be considered to be a power-law noise process for which 
the spectral density function of the phase measurements varies as 

32 2/)( ffS x πσ= , where σ2 is 
the variance of an underlying white noise process and f is the Fourier frequency [6].  Recently, FFM 
has been described in term of fractionally integrated noise processes [6, 7].  In this work, we adopt an 
older approach initially studied by Mandelbrot [8], where FFM is described as a linear combination of 
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Markov noise processes.  Let {xi:i = 1,…,m} be a time series of measurements of x made at uniformly 
spaced times {ti:i = i,…,m}.  A Markov noise process takes the following form: 
 

iii ekxx +=+1 ,                                                            (1) 
 

where k is a constant for an individual Markov process, ji ee ,  are independent random errors, such 

that jiee ji ≠= ,0),(cov , with normal distribution, zero expectation E (e) = 0, and variance 2
Mσ . 

The variance of ix  as i approaches ∞ is given by U, where: 
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Assuming 12 <k  then the autocorrelation function )(lρ  is given by: 

 
)(exp)( lRl −=ρ                                                            (3) 

 
where l is the lag and )(exp 0τRk −= , τ0 is the time interval between successive points.  In the work 
undertaken here, FFM is modelled as a linear combination of h Markov processes, where: 
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yj,i is the ith element of the jth Markov process, and yf,i is the ith element of the resulting approximation 
to FFM frequency measurements.  We choose the magnitude of the Markov components so that the 
variances of the component Uj = var (yj) are equal.  This will result in time series where plots of 
Log10(σy) against Log10(τ) will have a gradient of approximately zero.  
 
The properties of FFM modelled in terms of a linear combination of Markov processes are shown in 
Figures 2, 3, and 4 below.  Four Markov processes are used to model FFM with 8/1 jj RR =+  and 

.1,75.0 01 == τR  Curves of a typical FFM simulation and their component Markov processes are 
shown in Figure 2.  Plots of Log10(σy) against Log10(τ) are shown in Figure 3, based on theory 
(continuous lines) and simulated data (marks), and including results for the component Markov 
processes.  
 
When simulated data are used, the initial values of the Markov time series 1,jy  are generated so that 
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This results in a stationary time series. 
 
A plot of Log10(σy) against Log10(τ) for an individual Markov process possesses a single maximum at 

R81.1≈τ .  Plots of Log10(σy) against Log10(τ) obtained from the sum of several series of Markov 
processes summed as described in equation (4) results in a plot of Log10(σy) against Log10(τ) that 
exhibits a “ripple” effect; see Figure 4.  The FFM may be constructed so that the underlying gradient 
approximates zero.  It is relatively simple to construct a linear combination of Markov processes such 
that a plot of Log10(σy) against Log10(τ) has a gradient between –1/2 and 2/1 , and so models any 
power-law noise process intermediate in characteristics between WFM and RWFM. 
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Figure 2.  An example of a simulated FFM noise process and its Markov components 
(M1 to M4), offset by 10, 20 30 and 40 units, respectively, for clarity.  
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Figure 3.  Plots of Log10(σy) against Log10(τ) obtained from both simulation and 
theory for a FFM  noise process and its Markov components (M1 to M4). 

 
 
The effect of increasing the “spacing ratio” 1/ += jj RRs  between the Markov processes from 

8/1 jj RR =+  to 16/1 jj RR =+  is shown in Figure 4.  The magnitude and period of the “ripple” 
observed on the plots of Log10(σy) against Log10(τ) is significantly increased.  There is, however, a 
price to be paid in using a small spacing ratio in terms of additional computational time.  The “ripple” 
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is not clearly observed on the FFM curves of Figure 3 due to the y-axis scale interval being much 
larger. 
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Figure 4.  Plots of Log10(σy) against Log10(τ) obtained from theory when modelling 
FFM using Markov noise processes with spacing ratios of 8 and 16 respectively.  A 
bias has been added to the (ratio = 16) curve for clarity.  
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Figure 5.  Plots of the autocorrelation function ρ(l) obtained as a function of lag l 
derived from theory and by simulation for FFM noise processes and for the four 
Markov processes (M1 to M4) used in its construction.  20,000 points were used in 
the simulation. 
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Figure 5 shows plots of the autocorrelation function, obtained from both theory and simulation.  The 
autocorrelation of the FFM decays much slower than would be expected from a single exponential 
decay; this “long-memory” characteristic of the FFM is well known [7].  From the above plots it is 
reasonable to assume that a good approximation to FFM has been achieved.  It must also be 
remembered that it is only possible to generate an autocorrelation function because we are modelling 
FFM with a finite number of Markov processes; otherwise, the FFM noise process would not be 
stationary.  
 
 
3.  DESIGN  OF  THE  KALMAN  FILTER 
 
The development of Kalman filter clock algorithms have been described previously [2,4].  In this 
work, each Markov process contributes an extra component to the state vector.  When using three 
clocks where the FFM for each clock is modelled by four Markov processes, the state vector is given 
by: 
 

Tmmzyxmmzyxmmzyxx ),,,,,,,,,,,(ˆ 343133324212221411111 LLL=               (6) 
 
where xi , yi and zi are the time offset, frequency offset, and linear frequency drift offset between the 
clock i and an ideal clock.  mij is the frequency offset between the jth Markov component of the FFM 
of clock i.  The composite clock is obtained as the Kalman filter’s estimate of this “ideal” clock. 
 
The component Φii of the state propagation matrix for clock i is given by: 
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where ),..,( 1 ndiag ΦΦ=Φ , there being n clocks in the ensemble.  The top left 3-by-3 sub-matrix is 
well-known and the additional terms represent the Markov components [9].  
 
The component Qii of the process covariance matrix Q for clock i is given by: 
 

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2
404220

2
40412

2
0

2
101220

2
10112

2
0

0
22

0
2

2
40412

2
0

2
10112

2
0

2
0

2
11

)()(

)()(
000
02/

)()(02/

MCMC

MCMC

RWFMRWFM

MCMCRWFMii

ii

RaRa

RaRa

RaRaQ

Q

σττσττ

σττσττ

τστσ
σττστττσ

O

O

LL

 (8a) 

 



35th Annual Precise Time and Time Interval (PTTI) Meeting 

 287

where ),..,( 11 nnQQdiagQ = , 02 =RRFMσ  as we assume that RRFM is not present.   
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where 2

4
2

1... MCMC σσ  are the differential variances of the Markov noise process. 
 
The 2

WFMσ  and 2
RWFMσ  terms of the top left 3-by-3 matrix are well-known [10] and the additional 

terms describe the noise added by the Markov processes [9].  There is assumed to be no correlation 
between the noise observed in individual clocks;, hence, the sub-matrices Qij have only zero elements. 
 
In this work, we assume clock 1 to be the reference clock.  Measurement are made of (clock i – clock 
1).  The resulting design matrix in the case of three clocks is given by H, where: 
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4.  COVARIANCE  REDUCTION 
 
The performance of Kalman-filter-based clock algorithms has been limited due to the physical 
parameters estimated by the state vector being only partly observable from the measurements made 
between individual clock pairs.  Greenhall [4] has recently overcome these problems through the 
development of a method described as covariance reduction.  Following the application of the error 
covariance update equation, we apply the following operation to the parameter covariance matrix P+: 
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where ),..,( 11 nnSSdiagS = .  S is formed from an identity matrix where the elements corresponding 
to the x (phase) component of the state vector are set to zero.  The covariance reduction technique is 
applied to all work undertaken in this paper.  
 
 
 
5.  EVALUATING  THE  PERFORMANCE  OF  THE  KALMAN 
FILTER  USING  SIMULATED  DATA 
 
The performance of the Kalman filter for simulated data is shown in Figures 6 to 9 below.  Three 
clocks are used in each simulation.  In Figures 6 and 7, clocks 1 and 3 exhibit only WFM noise and 
clock 2 FFM.  In Figures 8 and 9, clocks 1 and 3 exhibit RWFM and clock 3 FFM, the FFM being 
modelled using four Markov processes.  The clock phase outputs are shown in Figures 6 and 8. 
Figures 7 and 9 show plots of Log10(σy) against Log10(τ).  
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Figure 6.  Phase offsets of the three clocks used in the simulation.  Clocks 1 and 3 
exhibit WFM and clock 2 FFM.  The resulting composite is shown. 
 
  

Figures 6 to 9 show the performance of the individual clocks and the resulting composite.  At almost 
all averaging times, the stability of the composite clock is equal to or better than the stability of the 
most stable clock (Figures 7 and 9).  Data from the first 5% of the time series are not used in the 
computation of the plots of Log10(σy) against Log10(τ)  so as to give the Kalman Filter time to “settle 
down.”  At any averaging time (τ), it is possible to form an optimally weighted mean of the clocks 
that will minimize the AVAR of the resulting composite; these weights are given by wi, where: 
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Figure 7.  Plots of Log10(σy) against Log10(τ) obtained from the individual clocks and 
from the composite obtained from the Kalman filter.  The final two curves show the 
σy obtainable from an optimal weighted mean of the clock measurements and those 
obtained from a fixed weighting.  

 
 
The resulting plot of Log10(σy) against Log10(τ) is shown as the “optimal” curve in Figures 7 and 9.  It 
is important to note that, for this curve, different clock weights have been used at each τ.  By 
comparing the composite curve against the optimal curve, we conclude that the composite curve 
approaches the optimal curve at all averaging times, demonstrating that the addition of Markov 
components to the state vector may result in a clock algorithm that is close to optimal at all averaging 
times.  Finally, we take a single clock weighting optimal at τ = 10,000s.  By comparing this “sample” 
curve with the composite curve, we are able to observe the difference in performance between the 
Kalman-filter-based algorithm and a simple weighted mean algorithm.  The Kalman-filter-based clock 
algorithm performs close to optimal at all averaging times, while the simple weighted mean clock 
algorithm is optimal at a single averaging time, and performs sub-optimally at all other averaging 
times.  It must be remembered, however, that the superior performance of the Kalman-filter-based 
clock algorithm may only be obtained if the noise processes do indeed approximate a linear 
combination of WFM, FFM, and RWFM noise processes and requires that good estimates for the 
corresponding noise parameters are available. 
 
 
6.  OBSERVING  THE  MARKOV  COMPONENTS  OF  THE  STATE 
VECTOR 
 
The successful operation of this clock algorithm is due the Kalman filter’s ability to correctly estimate 
the Markov components of the state vector.  Figure 10 shows the simulated data for two of the 
Markov processes M3 and M4 and the resulting state vector estimate.  There is a high degree of 
correlation between the two M4 curves and, to a lesser extent, between the two M3 curves.  These 
results suggest that the Kalman filter is correctly estimating the Markov components of the state 
vector. 
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Figure 8.  Phase offsets of the three clocks used in the simulation.  Clocks 1 and 3 
exhibit RWFM and clock 2 FFM.  The resulting composite is shown.  
 

 
 

 

2 2.5 3 3.5 4 4.5 5  
-4 

-3.8 

-3.6 

-3.4 

-3.2 

-3 

-2.8 

-2.6 

-2.4 
Phase offset AVAR plots 

Log10(τ )

Lo
g 1

0(
σ y

) 

Clock 1
Clock 2
Clock 3
Composite  
Optimal 
Sample 

 
 
Figure 9.  Plots of Log10(σy) against Log10(τ) obtained from the individual clocks and 
from the composite obtained from the Kalman filter.  The final two curves show the 
σy obtainable from an optimal weighted mean of the clock measurements and those 
obtained from a fixed weighting. 
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Figure 10 shows the Markov state vector estimates M3 and M4 and corresponding 
simulated Markov noise processes. Integer offsets of between zero and three units 
have been added for clarity. 

  
 
7.  ESTIMATING  THE  CLOCK  NOISE  PARAMETERS 
 
To operate this Kalman filter clock algorithm using real clock data, it is necessary to first estimate the 
magnitude of the noise parameters 2

WFMσ , 2
RWFMσ , and 2

MCσ .  A method to estimate the magnitude of 
noise parameters is described in [5].  Estimates of a scaled AVAR are obtained from the measurement 
data set at averaging times 02 ττ n= , where n is a positive integer and τ0 is the minimum spacing of 
the data set.  An iterative least squares process is then applied to produce a near optimal estimate of 
the noise parameters in the presence of highly correlated AVAR estimates. 
 
In this paper, the use of a scaled AVAR has been replaced with a D (4) Daubechies wavelet variance 
[11].  The D (4) wavelet is itself a second-difference variance.  In this work, the wavelet variances are 
applied to frequency measurements, and are used to resolve 2

WFMσ , 2
FFMσ , and 2

RWFMσ  noise 

parameters.  2
FFMσ  represents a FFM noise process that is approximated as the sum of n Markov 

noise processes, each with variance )1( 2

2

n

M
k−

σ as described in equation (2).  The advantage of using 

the wavelet variance is that, in the presence of power-law noise processes, the correlation between the 
estimates of individual variances is minimal and may be neglected.  This significantly simplifies the 
analysis process, in particular where there are a relatively large number of variance estimates and 
measurements.  It must be remembered that we are making measurements between pairs of clocks; the 
noise parameter resolution technique must be combined with a three-cornered hat.  In the case of only 
three clocks being present, we construct the following least-squares problem:  
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σHD =                                                            (13b) 

 
where dijk is the ith D (4) wavelet variance estimated from measurements of the (j-k) clock pair.  The 
elements of the design matrix H may be simply computed for wavelets of small width and obtained 
for wavelets of larger width by extrapolation.  The variance of the wavelet variance var (dj) may be 
estimated as:  
 

ndd jj /2)var( 2=                                                        (14) 
 
where n is the number of samples in the wavelet estimate; these are assumed to be uncorrelated.  
 
An example of the estimate of noise parameters is shown in Figure 11 below.  The first three curves 
show plots of Log10(σy) against Log10(τ) obtained for NPL’s three active hydrogen masers using a 
three-cornered hat.  The same data set is then used to estimate the 2

WFMσ , 2
FFMσ , and 2

RWFMσ  noise 
parameters for each clock.  These noise parameters are themselves used to determine theoretical 
curves of Log10(σy) against Log10(τ); these are shown in the second three curves.  The two curves 
obtained for each clock are in broad agreement. 
 
 
8.  FIRST  RESULTS  USING  REAL  CLOCK  MEASUREMENTS 
 
The Kalman filter clock algorithm has been applied to 10 days of data from NPL’s three active 
hydrogen masers.  The resulting plots of Log10(σy) against Log10(τ) obtained from (Composite – 
Individual Clock) estimates are shown in Figure 12.  Because we are unable to compare against an 
“ideal” clock, the stability of (Composite – Individual Clock) estimates are examined.  The results are 
encouraging; however, it must be remembered that there will be a high degree of correlation between 
the most stable clocks used in the algorithm and the composite.  Future work will include comparing 
the stability of (Composite – Individual Clock) estimates, obtained from theory and those obtained 
from applying the clock algorithm to real data.  
 
In the longer term, it is hoped to compare the output of the clock algorithm against NPL’s cesium 
fountain, as well as against other UTC (k) time scales using two-way time transfer measurements, and 
also to develop methods to estimate the stability of the resulting composite.     
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Figure 11.  Plots of Log10(σy) against Log10(τ) obtained for NPL’s three active 
hydrogen masers using a three-cornered hat, and obtained using the estimated noise 
parameters. 
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Figure 12.  Plots of Log10(σy) against Log10(τ) obtained from (Composite – Individual 
Clock) estimates obtained from applying the Kalman filter clock algorithm to NPL’s 
three active hydrogen masers. 
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9  CONCLUSIONS  
 
We have shown that Flicker Frequency Modulation noise may be described approximately as a linear 
combination of Markov noise processes.  This description of FFM has been successfully included in a 
Kalman-filter-based clock algorithm.  The result is a clock algorithm that will produce close to 
optimal performance at all averaging times, when operating in the presence of FFM.  The algorithm 
has been tested using simulated data.  First results have been obtained using real clock data.    
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QUESTIONS  AND  ANSWERS 
 
DON PERCIVAL (University of Washington):  In statistical terms, what you are doing is looking at a 
linear combination of autoregressive processes of order one.  Another approach which has been taken in 
the literature to try to approximate flicker noise processes is to look at higher-order autoregressive 
processes.  Instead of using nth first-order processes, you could think about an nth fourth-order auto-
regressive process.  That can be embedded in the Kalman filter very simply.  Is there some advantage to 
using the linear combination of first-order processes, as opposed to the nth fourth-order autoregressive 
process? 
 
JOHN DAVIS:  To be quite honest, it is just the simplest way I could see how to do it, adding up the 
simple Markov processes.  We have not looked at anything else.  If we took a view after, I could certainly 
try to do that.  That might be interesting. 
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